Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
106,439 result(s) for "Chemical compounds"
Sort by:
Radical aryl migration enables diversity-oriented synthesis of structurally diverse medium/macro- or bridged-rings
Medium-sized and medium-bridged rings are attractive structural motifs in natural products and therapeutic agents. Due to the unfavourable entropic and/or enthalpic factors with these ring systems, their efficient construction remains a formidable challenge. To address this problem, we herein disclose a radical-based approach for diversity-oriented synthesis of various benzannulated carbon- and heteroatom-containing 8-11(14)-membered ketone libraries. This strategy involves 1,4- or 1,5-aryl migration triggered by radical azidation, trifluoromethylation, phosphonylation, sulfonylation, or perfluoroalkylation of unactivated alkenes followed by intramolecular ring expansion. Demonstration of this method as a highly flexible tool for the construction of 37 synthetically challenging medium-sized and macrocyclic ring scaffolds including bridged rings with diverse functionalities and skeletons is highlighted. Some of these products showed potent inhibitory activity against the cancer cell or derivative of human embryonic kidney line in preliminary biological studies. The mechanism of this novel strategy is investigated by control experiments and DFT calculations.
Diversity-oriented synthesis yields novel multistage antimalarial inhibitors
Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.
Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic
Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3(-) and NH2(-) species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.
Isolation of a C5-Deprotonated Imidazolium, a Crystalline \Abnormal\ N-Heterocyclic Carbene
The discovery two decades ago of metal-free stable carbenes, especially imidazol-2-ylidenes [N-heterocyclic carbenes (NHCs)], has led to numerous breakthroughs in organic and organometallic catalysis. More recently, a small range of complexes has been prepared in which alternative NHC isomers, namely imidazol-5-ylidenes (also termed abnormal NHCs or αNHCs, because the carbene center is no longer located between the two nitrogens), coordinate to a transition metal. Here we report the synthesis of a metal-free οNHC that is stable at room temperature, both in the solid state and in solution. Calculations show that the οNHC is more basic than its normal NHC isomer. Because the substituent at the carbon next to the carbene center is a nonbulky phenyl group, a variety of substitution patterns should be tolerated without precluding the isolation of the corresponding αNHC.
A Synthetic Model of the Mn3Ca Subsite of the Oxygen-Evolving Complex in Photosystem II
Within photosynthetic organisms, the oxygen-evolving complex (OEC) of photosystem II generates dioxygen from water using a catalytic Mn 4 CaO n cluster (n varies with the mechanism and nature of the intermediate). We report here the rational synthesis of a [Mn 3 CaO 4 ] 6+ cubane that structurally models the trimanganese-calcium—cubane subsite of the OEC. Structural and electrochemical comparison between Mn 3 CaO 4 and a related Mn 4 O 4 cubane alongside characterization of an intermediate calcium-manganese multinuclear complex reveals potential roles of calcium in facilitating high oxidation states at manganese and in the assembly of the biological cluster.
A new method to position and functionalize metal-organic framework crystals
With controlled nanometre-sized pores and surface areas of thousands of square metres per gram, metal-organic frameworks (MOFs) may have an integral role in future catalysis, filtration and sensing applications. In general, for MOF-based device fabrication, well-organized or patterned MOF growth is required, and thus conventional synthetic routes are not suitable. Moreover, to expand their applicability, the introduction of additional functionality into MOFs is desirable. Here, we explore the use of nanostructured poly-hydrate zinc phosphate (α-hopeite) microparticles as nucleation seeds for MOFs that simultaneously address all these issues. Affording spatial control of nucleation and significantly accelerating MOF growth, these α-hopeite microparticles are found to act as nucleation agents both in solution and on solid surfaces. In addition, the introduction of functional nanoparticles (metallic, semiconducting, polymeric) into these nucleating seeds translates directly to the fabrication of functional MOFs suitable for molecular size-selective applications.
Dynamic Kinetic Resolution of Biaryl Atropisomers via Peptide-Catalyzed Asymmetric Bromination
Despite the widespread use of axially chiral, or atropisomeric, biaryl ligands in modern synthesis and the occurrence of numerous natural products exhibiting axial chirality, few catalytic methods have emerged for the direct asymmetric preparation of this compound class. Here, we present a tripeptide-derived small-molecule catalyst for the dynamic kinetic resolution of racemic biaryl substrates. The reaction proceeds via an atropisomer-selective electrophilic aromatic substitution reaction using simple bromination reagents. The result is an enantioselective synthesis that delivers chiral nonracemic biaryl compounds with excellent optical purity and good isolated chemical yields (in most cases a >95:5 enantiomer ratio and isolated yields of 65 to 87%). A mechanistic model is advanced that accounts for the basis of selectivity observed.
Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride
Uranium nitride [U[triple bond]N](x) is an alternative nuclear fuel that has great potential in the expanding future of nuclear power; however, very little is known about the U[triple bond]N functionality. We show, for the first time, that a terminal uranium nitride complex can be generated by photolysis of an azide (U-N=N=N) precursor. The transient U[triple bond]N fragment is reactive and undergoes insertion into a ligand C-H bond to generate new N-H and N-C bonds. The mechanism of this unprecedented reaction has been evaluated through computational and spectroscopic studies, which reveal that the photochemical azide activation pathway can be shut down through coordination of the terminal azide ligand to the Lewis acid B(C(6)F(5))(3). These studies demonstrate that photochemistry can be a powerful tool for inducing redox transformations for organometallic actinide complexes, and that the terminal uranium nitride fragment is reactive, cleaving strong C-H bonds.
Carbenes As Catalysts for Transformations of Organometallic Iron Complexes
Compared with the enormous arsenal of catalysts used to produce organic compounds, complementary species that are able to mediate sophisticated organometallic transformations are virtually nonexistent. We found that stable N-heterocyclic carbenes (NHCs) can mediate unusual organometallic transformations in solution at room temperature. Depending on the choice of NHC initiator, stoichiometric or catalytic reactions of bis(cyclooctatetraene)iron [Fe(COT)₂] ensue. The stoichiometric reaction leads to the isolation of a previously unknown mixed-valent species, featuring distinct and directly bonded Fe(0) and Fe(I) centers. In the catalytic process, three iron atoms are fused to afford the tri-iron cluster Fe₃(COT)₃, which is a hydrocarbon analog of Dewar's classic Fe₃(CO)₁₂ complex. The key step in both of these processes is proposed to involve the NHC's ability to induce metal-metal bond formation. These NHC-mediated reactions provide a foundation on which to develop future organometallic transformations that are catalyzed by organic species.